Solving sparse polynomial optimization problems with chordal structure using the sparse bounded-degree sum-of-squares hierarchy
نویسندگان
چکیده
منابع مشابه
A bounded degree SOS hierarchy for polynomial optimization
We consider a new hierarchy of semidefinite relaxations for the general polynomial optimization problem (P ) : f∗ = min{ f(x) : x ∈ K } on a compact basic semi-algebraic set K ⊂ Rn. This hierarchy combines some advantages of the standard LP-relaxations associated with Krivine’s positivity certificate and some advantages of the standard SOS-hierarchy. In particular it has the following attractiv...
متن کاملSolving Sparse Least Squares Problems on Massively Distributed Memory Computers
In this paper we study the parallel aspects of PCGLS, a basic iterative method whose main idea is to organize the computation of conjugate gradient method with preconditioner applied to normal equations, and Incomplete Modified Gram-Schmidt (IMGS) preconditioner for solving sparse least squares problems on massively parallel distributed memory computers. The performance of these methods on this...
متن کاملGeneralized Lagrangian Duals and Sums of Squares Relaxations of Sparse Polynomial Optimization Problems
Sequences of generalized Lagrangian duals and their SOS (sums of squares of polynomials) relaxations for a POP (polynomial optimization problem) are introduced. Sparsity of polynomials in the POP is used to reduce the sizes of the Lagrangian duals and their SOS relaxations. It is proved that the optimal values of the Lagrangian duals in the sequence converge to the optimal value of the POP usin...
متن کاملSparse Optimization with Least-Squares Constraints
The use of convex optimization for the recovery of sparse signals from incomplete or compressed data is now common practice. Motivated by the success of basis pursuit in recovering sparse vectors, new formulations have been proposed that take advantage of different types of sparsity. In this paper we propose an efficient algorithm for solving a general class of sparsifying formulations. For sev...
متن کاملSparse Optimization with Least - Squares Constraints Ewout
The use of convex optimization for the recovery of sparse signals from incomplete or compressed data is now common practice. Motivated by the success of basis pursuit in recovering sparse vectors, new formulations have been proposed that take advantage of different types of sparsity. In this paper we propose an efficient algorithm for solving a general class of sparsifying formulations. For sev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2020
ISSN: 0166-218X
DOI: 10.1016/j.dam.2017.12.015